Efficient Transfer Learning Schemes for Personalized Language Modeling using Recurrent Neural Network
نویسندگان
چکیده
In this paper, we propose an efficient transfer leaning methods for training a personalized language model using a recurrent neural network with long short-term memory architecture. With our proposed fast transfer learning schemes, a general language model is updated to a personalized language model with a small amount of user data and a limited computing resource. These methods are especially useful for a mobile device environment while the data is prevented from transferring out of the device for privacy purposes. Through experiments on dialogue data in a drama, it is verified that our transfer learning methods have successfully generated the personalized language model, whose output is more similar to the personal language style in both qualitative and quantitative aspects.
منابع مشابه
Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملPredicting the Coefficients of Antoine Equation Using the Artificial Neural Network (TECHNICAL NOTE)
Neural network is one of the new soft computing methods commonly used for prediction of the thermodynamic properties of pure fluids and mixtures. In this study, we have used this soft computing method to predict the coefficients of the Antoine vapor pressure equation. Three transfer functions of tan-sigmoid (tansig), log-sigmoid (logsig), and linear were used to evaluate the performance of diff...
متن کاملApplication of artificial neural networks on drought prediction in Yazd (Central Iran)
In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...
متن کاملارزیابی کاربرد شبکه عصبی مصنوعی و بهینهسازی آن با روش الگوریتم ژنتیک در تخمین دادههای بارش ماهانه (مطالعه موردی: منطقه کردستان)
Estimating spatial distribution of precipitation is vital to execute water resources plans, drought, land-use plans environment, watershed management, and agricultural master plans. High variation in amount of precipitation in various parts, lack of measurement stations, and the complexity of relationship between precipitation and parameters affecting it have doubled the importance of developin...
متن کاملAn efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems
Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1701.03578 شماره
صفحات -
تاریخ انتشار 2017